If the depth of a tree is smaller than 5
, then this tree can be represented by a list of three-digits integers.
For each integer in this list:
- The hundreds digit represents the depth
D
of this node,1 <= D <= 4.
- The tens digit represents the position
P
of this node in the level it belongs to,1 <= P <= 8
. The position is the same as that in a full binary tree. - The units digit represents the value
V
of this node,0 <= V <= 9.
Given a list of ascending
three-digits integers representing a binary with the depth smaller than 5. You need to return the sum of all paths from the root towards the leaves.
Example 1:
Input: [113, 215, 221]Output: 12Explanation: The tree that the list represents is: 3 / \ 5 1The path sum is (3 + 5) + (3 + 1) = 12.
Example 2:
Input: [113, 221]Output: 4Explanation: The tree that the list represents is: 3 \ 1The path sum is (3 + 1) = 4.
这道题还是让我们求二叉树的路径之和,但是跟之前不同的是,树的存储方式比较特别,并没有专门的数结点,而是使用一个三位数字来存的,百位数是该结点的深度,十位上是该结点在某一层中的位置,个位数是该结点的结点值。为了求路径之和,我们肯定还是需要遍历树,但是由于没有树结点,所以我们可以用其他的数据结构代替。比如我们可以将每个结点的位置信息和结点值分离开,然后建立两者之间的映射。比如我们可以将百位数和十位数当作key,将个位数当作value,建立映射。由于题目中说了数组是有序的,所以首元素就是根结点,然后我们进行先序遍历即可。在递归函数中,我们先将深度和位置拆分出来,然后算出左右子结点的深度和位置的两位数,我们还要维护一个变量cur,用来保存当前路径之和。如果当前结点的左右子结点不存在,说明此时cur已经是一条完整的路径之和了,加到结果res中,直接返回。否则就是对存在的左右子结点调用递归函数即可,参见代码如下:
解法一:
class Solution {public: int pathSum(vector & nums) { if (nums.empty()) return 0; int res = 0; unordered_mapm; for (int num : nums) { m[num / 10] = num % 10; } helper(nums[0] / 10, m, 0, res); return res; } void helper(int num, unordered_map & m, int cur, int& res) { int level = num / 10, pos = num % 10; int left = (level + 1) * 10 + 2 * pos - 1, right = left + 1; cur += m[num]; if (!m.count(left) && !m.count(right)) { res += cur; return; } if (m.count(left)) helper(left, m, cur, res); if (m.count(right)) helper(right, m, cur, res); }};
下面这种方法是迭代的形式,我们使用的层序遍历,与先序遍历不同的是,我们不能维护一个当前路径之和的变量,这样会重复计算结点值,而是在遍历每一层的结点时,加上其父结点的值,如果某一个结点没有子结点了,才将累加起来的结点值加到结果res中,参见代码如下:
解法二:
class Solution {public: int pathSum(vector & nums) { if (nums.empty()) return 0; int res = 0, cur = 0; unordered_mapm; queue q{ {nums[0] / 10}}; for (int num : nums) { m[num / 10] = num % 10; } while (!q.empty()) { int t = q.front(); q.pop(); int level = t / 10, pos = t % 10; int left = (level + 1) * 10 + 2 * pos - 1, right = left + 1; if (!m.count(left) && !m.count(right)) { res += m[t]; } if (m.count(left)) { m[left] += m[t]; q.push(left); } if (m.count(right)) { m[right] += m[t]; q.push(right); } } return res; }};
类似题目:
参考资料: